Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(45): 17338-17352, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37902991

RESUMO

Organohalide-respiring bacteria (OHRB)-mediated reductive dehalogenation is promising in in situ bioremediation of chloroethene-contaminated sites. The bioremediation efficiency of this approach is largely determined by the successful colonization of fastidious OHRB, which is highly dependent on the presence of proper growth niches and microbial interactions. In this study, based on two ecological principles (i.e., Priority Effects and Coexistence Theory), three strategies were developed to enhance niche colonization of OHRB, which were tested both in laboratory experiments and field applications: (i) preinoculation of a niche-preparing culture (NPC, being mainly constituted of fermenting bacteria and methanogens); (ii) staggered fermentation; and (iii) increased inoculation of CE40 (a Dehalococcoides-containing tetrachloroethene-to-ethene dechlorinating enrichment culture). Batch experimental results show significantly higher dechlorination efficiencies, as well as lower concentrations of volatile fatty acids (VFAs) and methane, in experimental sets with staggered fermentation and niche-preconditioning with NPC for 4 days (CE40_NPC-4) relative to control sets. Accordingly, a comparatively higher abundance of Dehalococcoides as major OHRB, together with a lower abundance of fermenting bacteria and methanogens, was observed in CE40_NPC-4 with staggered fermentation, which indicated the balanced syntrophic and competitive interactions between OHRB and other populations for the efficient dechlorination. Further experiments with microbial source tracking analyses suggested enhanced colonization of OHRB by increasing the inoculation ratio of CE40. The optimized conditions for enhanced colonization of OHRB were successfully employed for field bioremediation of trichloroethene (TCE, 0.3-1.4 mM)- and vinyl chloride (VC, ∼0.04 mM)-contaminated sites, resulting in 96.6% TCE and 99.7% VC dechlorination to ethene within 5 and 3 months, respectively. This study provides ecological principles-guided strategies for efficient bioremediation of chloroethene-contaminated sites, which may be also employed for removal of other emerging organohalide pollutants.


Assuntos
Chloroflexi , Cloreto de Vinil , Bactérias , Biodegradação Ambiental , Interações Microbianas
2.
J Hazard Mater ; 436: 129190, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739720

RESUMO

Polychlorinated biphenyls (PCBs) as typical halogenated persistent organic pollutants are widely distributed in natural environments, and can be enriched and magnified in organisms via food webs. It is consequently urgent and necessary to develop techniques to completely remove these persistent organohalides. In this study, we developed a process (Bio-RD-PAOP) by integrating microbial reductive dechlorination (Bio-RD) with subsequent persulfate activation and oxidation process (PAOP) for effective remediation of PCBs. Results showed the synergistic combination of advantages of Bio-RD and PAOP in dechlorination of higher-chlorinated PCBs and of PAOP in degradation/mineralization of lower-chlorinated PCBs, respectively. For the PAOP, both experimental evidences and theoretical calculations suggested that degradation rate and efficiency decreased with the increased PCB chlorine numbers. Relative to the Bio-RD and PAOP, Bio-RD-PAOP had significantly higher PCB removal efficiencies, of which values were PCB congener-specific. For example, removal efficiency of Bio-RD-PAOP in removing PCB88 is 2.50 and 1.86 times of that of Bio-RD and PAOP, respectively. In contrast, the efficiency is 1.66 and 3.35 times of Bio-RD and PAOP, respectively, for PCB180 removal. The PAOP-derived oxidizing species (mainly sulfate free radical) significantly decreased microbial abundance, particularly of the organohalide-respiring Dehalococcoides. Notably, co-existence of other microorganisms alleviated the inhibitive effect of oxidizing species on the Dehalococcoides, possibly due to formation of microbial flocs or biofilm. This study provided a promising strategy for extensive remediation of organohalide-contaminated sites, as well as new insight into impact of PAOP-derived oxidizing species on the organohalide-respiring community.


Assuntos
Bifenilos Policlorados , Biodegradação Ambiental , Cloro/metabolismo , Sedimentos Geológicos , Halogênios , Oxirredução , Bifenilos Policlorados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...